Overview of the Clinical Trial Data on Non-alcoholic Steatohepatitis (NASH) Brent A. Neuschwander-Tetri, MD, FACP, FACG, AGAF, FAASLD Professor of Internal Medicine Director, Division of Gastroenterology and Hepatology #### COI - Consultant/Advisor: - Allergan, Arrowhead, Blade, Boehringer Ingleheim, BMS, Coherus, Consynance, Enanta, Gelesis, Gilead, Intercept, Lipocine, Madrigal, Medimmune, Merck, Metacrine, NGM, pH-Pharma, Prometheus ### NASH Pipeline in 2018 - Front Runners ### The lipotoxicity model of NASH and targets for therapy Nature Reviews | Disease Primers ### The lipotoxicity model of NASH and targets for therapy Nature Reviews | Disease Primers ### The lipotoxicity model of NASH and targets for therapy Nature Reviews | Disease Primers ### Targets of therapy #### Drugs in Phase 3 trials #### **NASH Ongoing Phase 3 trials** - Obeticholic acid: REGENERATE & REVERSE (Intercept) - Elafibranor: RESOLVE-IT (Genfit) - Selonsertib: STELLAR 3 & STELLAR 4 (Gilead) - Cenicriviroc: AURORA (Allergan) All are Phase3/4 adaptive design with histological end points for Subpart H conditional approval followed by clinical end points for full approval #### Pioglitazone for NASH - Pioglitazone 45 mg daily + diet x 18 months - -N = 101 - 1° endpoint: NAS improvement >= 2 and no worsening fibrosis - Diabetic subjects (n = 52) had a better response - Improvements maintained in a 18 month open label follow up study - Cusi et al, Ann Intern Med 2016;165:305-315 - AASLD and EASL guidance: consider in non-cirrhotics with biopsy dx of NASH Bril et al, Clin Gastroenterol Hepatol 2018;16:558-566 ### THE LANCET Published Online November 7, 2014 http://dx.doi.org/10.1016/S0140-6736(14)61933-4 # Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial Brent A Neuschwander-Tetri, Rohit Loomba, Arun J Sanyal, Joel E Lavine, Mark L Van Natta, Manal F Abdelmalek, Naga Chalasani, Srinivasan Dasarathy, Anna Mae Diehl, Bilal Hameed, Kris V Kowdley, Arthur McCullough, Norah Terrault, Jeanne M Clark, James Tonascia, Elizabeth M Brunt, David E Kleiner, Edward Doo, for the NASH Clinical Research Network* Partial funding for the trial, obeticholic acid, and placebo were provided by Intercept Pharmaceuticals under a Collaborative Research and Development Agreement with the NIDDK. ## The FLINT trial - Obeticholic acid (OCA), 25 mg orally daily vs placebo - Inclusion: adults with NASH on biopsy, NAS ≥ 4; Exclusion: cirrhosis - N = 283 patients randomized at 8 clinical centers - 72 weeks of treatment - Biopsy ≤ 3 mo. before treatment and after 72 weeks - Primary endpoint - Improvement in NAFLD activity score ≥ 2 pts with no worsening of fibrosis # FLINT primary endpoint - Improvement in NAFLD activity score* (NAS) ≥ 2 pts - * NAS = steatosis grade (0-3) + inflammation grade (0-3) + ballooning grade (0-2) - No worsening of fibrosis - Results: ### Improvement in fibrosis and NASH resolution #### NASH resolution # Enzymes and body weight # Serum lipids Neuschwander-Tetri et al, The Lancet, http://dx.doi.org/10.1016/S0140-6736(14)61933-4 ### Adverse events - 6 severe adverse events in obeticholic acid group - 4 severe pruritus (1 stopped treatment) - 1 hypoglycemia - 1 possible cerebral ischemia (dysarthria and dizziness) - Moderate or severe prurites - 23% in obeticholic acid - 6% in placebo Gastroenterology 2016;150:1147-1159 #### **CLINICAL—LIVER** # Elafibranor, an Agonist of the Peroxisome Proliferator — Activated Receptor — α and — δ , Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening Vlad Ratziu,^{1,2} Stephen A. Harrison,³ Sven Francque,⁴ Pierre Bedossa,⁵ Philippe Lehert,^{6,7} Lawrence Serfaty,⁸ Manuel Romero-Gomez,⁹ Jérôme Boursier,¹⁰ Manal Abdelmalek,¹¹ Steve Caldwell,¹² Joost Drenth,¹³ Quentin M. Anstee,¹⁴ Dean Hum,¹⁵ Remy Hanf,¹⁵ Alice Roudot,¹⁵ Sophie Megnien,¹⁵ Bart Staels,¹⁶ and Arun Sanyal,¹⁷ on behalf of the GOLDEN-505 Investigator Study Group #### Elafibranor—Phase IIb GOLDEN Trial 274 adult patients with histologic evidence of NASH; treatment with vitamin E, polyunsaturated fatty acids, or UDCA discontinued 3 months prior to biopsy; international RCT (Europe, United States) 1° Endpoint Resolution of NASH with no worsening of fibrosis **2° Endpoint**Change in NAS, fibrosis, liver enzymes, lipid parameters, metabolic markers, safety markers Abbreviations: NAS, nonalcoholic fatty liver disease activity score; NASH, nonalcoholic steatohepatitis; RCT, randomised controlled trial; UDCA, ursodeoxycholic acid. ClinicalTrials.gov. NCT01694849. https://clinicaltrials.gov/ct2/show/NCT01694849. Ratziu V, et al. *Gastroenterology*. 2016 Feb 11. [Epub ahead of print] #### **GOLDEN 505 Primary Endpoint in ITT Population** Resolution of NASH Without Fibrosis Worsening Abbreviations: EASL, European Association for the Study of the Liver; ELF, elafibranor; ITT, intent-to-treat; NASH, nonalcoholic steatohepatitis. Ratziu V, et al. *Gastroenterology.* 2016 Feb 11. [Epub ahead of print] Modified definition (no ballooning; lobular inflammation none or mild) # GOLDEN 505 Primary Endpoint in Patients with NAS ≥4 *Modified Definition* Abbreviations: ELF, elafibranor; NAS, nonalcoholic fatty liver disease activity score. Ratziu V, et al. *Gastroenterology*. 2016 Feb 11. [Epub ahead of print] #### HEPATOLOGY HEPATOLOGY, VOL. 67, NO. 5, 2018 # A Randomized, Placebo-Controlled Trial of Cenicriviroc for Treatment of Nonalcoholic Steatohepatitis With Fibrosis Scott L. Friedman,^{1*} Vlad Ratziu,^{2*} Stephen A. Harrison,³ Manal F. Abdelmalek,⁴ Guruprasad P. Aithal,⁵ Juan Caballeria,⁶ Sven Francque,⁷ Geoffrey Farrell,⁸ Kris V. Kowdley,⁹ Antonio Craxi,¹⁰ Krzysztof Simon,^{11,12} Laurent Fischer,¹³ Liza Melchor-Khan,¹³ Jeffrey Vest,¹⁴ Brian L. Wiens,¹³ Pamela Vig,¹³ Star Seyedkazemi,¹³ Zachary Goodman,¹⁵ Vincent Wai-Sun Wong,¹⁶ Rohit Loomba,^{17,18} Frank Tacke ⁽¹⁾,¹⁹ Arun Sanyal,^{20**} and Eric Lefebvre^{13**} **ILC** 1368 Cenicriviroc treatment for adults with non-alcoholic steatohepatitis: Year 2 analysis of the Phase 2b CENTAUR study Ratziu C, et al. ILC 2018 ### Cenicriviroc (CVC) Targets Inflammation & Fibrogenesis #### NASH Disease Progression # Metabolic-driven liver injury Evokes inflammatory response Drives fibrogenesis #### **CVC** Mechanism Block inflammatory signaling Disrupt fibrogenic signaling In activate stellate cells #### Phase 2b, Randomized, Double-Blind, Placebo-Controlled Study - First Phase 2b study in NASH to collect 3 serial biopsies over a 2-year duration - Key eligibility criteria - Fibrosis stage 1-3 (NASH CRN), NASH diagnosis (NAS ≥4) - Enriched for T2DM, high BMI with at least 1 criteria of MetS, or bridging fibrosis and/or NAS ≥5 - Stratification factors: NAS (4 or ≥5) and fibrosis stage (≤2 or >2) - Study conducted in the USA, EU, Australia, and Hong Kong #### CVC demonstrated antifibrotic effect without impact on underlying steatohepatitis at Year 1 (ITT) Wong V APASI Annual Meeting 2017 ## ≥1-stage antifibrotic response with CVC following 2 years of #### ≥2-stage antifibrotic response with CVC after 1 and 2 years of treatment **AND** no worsening of NASH #### HEPATOLOGY HEPATOLOGY, VOL. 67, NO. 2, 2018 # The ASK1 Inhibitor Selonsertib in Patients With Nonalcoholic Steatohepatitis: A Randomized, Phase 2 Trial Rohit Loomba,¹ Eric Lawitz,² Parvez S. Mantry,³ Saumya Jayakumar,⁴ Stephen H. Caldwell,⁵ Hays Arnold,⁶ Anna Mae Diehl,⁷ C. Stephen Djedjos,⁸ Ling Han,⁸ Robert P. Myers,⁸ G. Mani Subramanian,⁸ John G. McHutchison,⁸ Zachary D. Goodman,⁹ Nezam H. Afdhal,¹⁰ and Michael R. Charlton,¹¹ for the GS-US-384-1497 Investigators GS-4997, an Inhibitor of Apoptosis Signal-Regulating Kinase (ASK1), Alone or in Combination with Simtuzumab for the Treatment of Nonalcoholic Steatohepatitis (NASH): A Randomized, Phase 2 Trial Rohit Loomba¹, Eric Lawitz², Parvez S. Mantry³, Saumya Jayakumar⁴, Stephen H. Caldwell⁵, Hays Arnold⁶, Anna Mae Diehl⁷, C. Stephen Djedjos⁸, Catherine Jia⁸, Robert P. Myers⁸, G. Mani Subramanian⁸, John G. McHutchison⁸, Zachary D. Goodman⁹, Nezam H. Afdhal¹⁰, Michael R. Charlton¹¹ ¹University of California at San Diego, San Diego, CA; ²Texas Liver Institute, San Antonio, TX; ³The Liver Institute at Methodist Dallas, Dallas, TX; ⁴University of Calgary, Calgary, AB, Canada; ⁵University of Virginia, Charlottesville, VA; ⁶Gastroenterology Consultants of San Antonio, San Antonio, TX; ⁷Duke Clinical Research Institute, Durham, NC; ⁸Gilead Sciences, Inc., Foster City, CA; ⁹Inova Fairfax Hospital, Falls Church, VA; ¹⁰Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; ¹¹Intermountain Medical Center, Salt Lake City, UT # Study Design - Key inclusion criteria - Biopsy-proven NASH with NAS ≥5 (≥1 point for steatosis, lobular inflammation, hepatocellular ballooning) - F2-3 fibrosis - 2:2:1:1:1 randomization (stratified by diabetes) ### Selonsertib & NASH - After 24 weeks of treatment in patients with NASH and F2-3 fibrosis, selonsertib at 18 mg/day has beneficial effects on: - Fibrosis regression and progression - Liver stiffness by MRE - MRI-PDFF - ALT and GGT - CK-18 - selonsertib was safe and well-tolerated - Phase 3 trials of selonsertib in patients with NASH and advanced fibrosis and cirrhosis have been initiated. ### NGM282 FGF19 analogue phase 2 trial #### Change in absolute LFC at Week 12 (n=19) - Primary endpoint: 100% patients had decrease in absolute LFC ≥5% - Mean decrease in relative LFC was 67%; 100% patients had relative LFC ≥30% - Rapid and significant reductions in: (C4), ALT and AST, fibrosis markers (PRO-C3), and LIF #### 12-week histology endpoints (n=19) - 68% patients (n=13) were early histological responders[†] - 42% patients improved fibrosis ≥1 stage (3 patients F3→F1) - Elevations in LDL-C managed by rosuvastatin back to baseline or below target of 100 mg/dl - Safety and tolerability favourable: most common AEs were mild loose/frequent stools and injection site reactions #### **Conclusions** Unprecedented improvements in fibrosis and NASH-related histology, with earlier decreases in hepatic steatosis, liver transaminases and fibrosis markers *NAS ≥4 (≥1 in each component), stage 1–3 fibrosis, absolute LFC ≥8% (MRI-PDFF) †Defined as ≥1 stage fibrosis improvement, ≥2-point decrease in NAS or resolution of NASH Harrison S, et al. ILC 2018, #5037 (GS-014) Slide courtesy of Naga Chalasani (IU) # MGL-3196, a selective thyroid hormone receptor beta (THR-β) agonist: Phase 2 NASH study #### **Background** - MGL-3196 lowers LDL-C and TGs; and could reduce NASH by increased β-oxidation of liver lipids and improved mitochondrial function - Safe and well tolerated in >300 dosed subjects (Phase 1) #### **Methods** - 125 patients with biopsy-proven NASH* and ≥10% liver fat on baseline MRI-PDFF randomized 2:1 to oral MGL-3196 qd or placebo for 36 weeks; blinded increase or decrease in dose possible based on exposure - Serial liver biopsies performed #### Results (Week 12) - Liver enzymes: Decreases in ALT and AST in high-exposure MGL-3196 vs. PBO (p=0.04, 0.02, respectively) - Fibrosis biomarkers: MGL-3196 significantly decreased ELF™ and Pro-C3 (up to 40% vs. PBO; p=0.009, 0.002, respectively) in patients with >ULN levels at baseline (reflective of more advanced fibrosis stage) - Safety - Study still blinded; MGL-3196 shows very good tolerability: mostly mild-moderate AEs, balanced between all groups - Three SAEs, all unrelated to drug - No change in thyroid axis, heart rate or vital signs - Significant decreases in S/DBP for MGL-3196 vs. PBO #### **Conclusions** - MGL-3196 reduced NASH and liver fibrosis - Histopathological assessment (36-week liver biopsy) will allow for correlations with baseline biopsy and multiple 12- and 36-week non-invasive imaging and biomarkers Lipids: meaningful reductions in atherogenic lipids (p<0.0001) • Multiparametric MRI-PDFF substudy: Statistically sig. improvements in cT1 (shown to correlate with inflammation on liver biopsy) # MGL-3196, a selective thyroid hormone receptor beta (THR-β) agonist: Phase 2 NASH study #### **Background** - MGL-3196 lowers LDL-C and TGs; and could reduce NASH by increased β-oxidation of liver lipids and improved mitochondrial function - Safe and well tolerated in >300 dosed subjects (Phase 1) #### Methods - 125 patients with biopsy-proven NASH* and ≥10% liver fat on baseline MRI-PDFF randomized 2:1 to oral MGL-3196 qd or placebo for 36 weeks; blinded increase or decrease in dose possible based on exposure - Serial liver biopsies performed #### Results (Week 12) - Liver enzymes: Decreases in ALT and AST in high-exposure MGL-3196 vs. PBO (p=0.04, 0.02, respectively) - Fibrosis biomarkers: MGL-3196 significantly decreased ELF™ and Pro-C3 (up to 40% vs. PBO; p=0.009, 0.002, respectively) in patients with >ULN levels at baseline (reflective of more advanced fibrosis stage) - Safety - Study still blinded; MGL-3196 shows very good tolerability: mostly mild–moderate AEs, balanced between all groups - Three SAEs, all unrelated to drug - No change in thyroid axis, heart rate or vital signs - Significant decreases in S/DBP for MGL-3196 vs. PBO #### **Conclusions** - MGL-3196 reduced NASH and liver fibrosis - Histopathological assessment (36-week liver biopsy) will allow for correlations with baseline biopsy and multiple 12- and 36-week non-invasive imaging and biomarkers • **Lipids**: meaningful reductions in atherogenic lipids (p<0.0001) # GR-MD-02, a Galectin-3 inhibitor, is better in patients with NASH cirrhosis without varices and mild portal hypertension (PH) Background: Galectin-3 protein is implicated in the pathogenesis of NASH **Methods:** 162 patients with NASH cirrhosis and PH, with no or small oesophageal varices (OVs), randomized 1:1:1 to 26 q2w IV infusions of GR-MD-02 2 mg/kg (GR2; n=54), 8 mg/kg (GR8; n=54), or PBO (n=54) over 52 weeks #### Results: - No significant differences in **ΔHVPG** (primary endpoint), fibrosis, or NAS between PBO and GR in total population, only improvement in hepatocyte ballooning vs PBO with GR2 (p=0.03); trend with GR8 (p=0.08) - Mild PH subgroup^a (n=53; 20 PBO, 17 GR2, 16 GR8): Significant difference in ΔHVPG between PBO and GR8 (p=0.036) - Safety: GR-MD-02 well tolerated; similar rate of AEs and SAEs. More patients discontinued GR8 due to AEs (n=5; PBO and GR2, n=0) #### **Conclusions** - GR-MD-02 did not improve HVPG or liver fibrosis in total population, but significantly improved hepatocyte ballooning - Significant and clinically relevant beneficial effects in patients with NASH cirrhosis with no OV and mild PH with GR2 - Significantly fewer GR2 patients developed new OVs at end-of-study - These data warrant further investigating GR-MD-02 in NASH cirrhosis without varices ### Summary - Four drugs with different targets are in Phase 3 trials for NASH - Results expected in 1-2 years - Many drugs in are Phase 2 trials with provocative results - Future therapy may be combination therapy - Ideally we will have personalized therapy - Timeline: 2-5 years