## Clinical Pearls on Chronic C Infection: Special Consideration and Current Treatments

越 H.H. CHAO Comprehensive Digestive Disease Center UC Irvine • Healthcare





Douglas L Nguyen, MD Associate Clinical Professor of Medicine H. H. Chao Comprehensive Digestive Disease Center University of California, Irvine Medical Center

### **Financial Disclosures**

AbbVie: consultant, speakers bureauGilead: consultant, speakers bureau

### **Learning Objectives**

Recognize the important steps in the evaluation of patient with hepatitis C antibody positivity

Recognize strategies to best stage patient's liver disease prior to initiation of hepatitis C treatment

Identify medications and duration for chronic hepatitis C treatment

### Case 1: A New Referral

22 year old male with history of cocaine abuse who is currently in a drug rehabilitation program who presents to the clinic for evaluation of hepatitis C Ab positivity. What are the next steps to consider in the management of patient?

## Hepatitis C Genotypes in U.S.



NEJM 1998;339:1485-1492.

# Sources of Infection for Persons with Hepatitis C: USA

#### **Injection drug use 60%**



\*Nosocomial; iatrogenic; Perinatal Adapted from CDC Hepatitis Slide Kit <u>http://www.cdc.gov/ncidod/diseases/hepatitis/slideset</u>

# Who Should You Screen?

| Mult | Persons who ever injected illegal drugs                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2    | HIV-infected patients                                                                                                               |
|      | Persons who have received tattoos from unlicensed or unregulated environments                                                       |
| 44   | Those with certain medical conditions, including:                                                                                   |
|      | <ul> <li>Persons who received clotting factor concentrates produced before 1987</li> </ul>                                          |
|      | <ul> <li>Persons who were ever on long-term hemodialysis</li> </ul>                                                                 |
|      | <ul> <li>Persons with persistently abnormal alanine transaminase levels</li> </ul>                                                  |
| Ē    | Prior recipients of transfusions or organ transplants, including:                                                                   |
| Ť    | <ul> <li>Persons who were notified that they received blood from a donor who later tested<br/>positive for HCV infection</li> </ul> |
|      | <ul> <li>Persons who received a blood transfusion, blood components, or an organ transplant<br/>before July 1992</li> </ul>         |
| 0    | Healthcare, emergency medical, and public safety workers after needlesticks, sharps, or mucosal exposures to HCV-positive blood     |
| 0    | Children born to an HCV-positive mother                                                                                             |

### Age Cohort Screening for Hepatitis C

|                             | Birth 1945 - 1965 |
|-----------------------------|-------------------|
| US Population (millions)    | 78.8              |
| Anti-HCV Prevalence         | 3.29%             |
| Percent anti-HCV identified | 74.5%             |
| Gender                      |                   |
| Male                        | 4.35%             |
| Female                      | 2.23%             |
| Race/Ethnicity              |                   |
| White                       | 2.93              |
| Black                       | 6.31              |
| Hispanic                    | 3.92              |

### Mortality Risk with Hepatitis C



1. Ly KN et al. Ann Intern Med. 2012;156(4):271-278.

2. Holmberg S, Ly KN, Xing J, Moorman AC. Rising mortality from hepatitis C virus in the United States, 2002-2013. Paper presented at: American College of Gastroenterology Annual Scientific Meeting and Postgraduate Course; October 16-21, 2015; Honolulu,

# Hepatitis C: A Systemic Illness

#### **INCREASED RISK FOR:**

Depression Carotid atherosclerosis/atherothrombosis Type 2 diabetes mellitus Hypertension Congestive heart failure Chronic kidney disease End-stage renal disease Kidney cancer Other renal manifestations (eg, glomerulonephritis, proteinuria)<sup>a</sup> Low bone mineral density (BMD) Rheumatologic manifestations (eg, polyarthralgia, polyarthritis)<sup>a</sup> Fatigue

#### POSSIBLE INCREASED RISK FOR:

Neurologic impairment/disorders

Stroke

Coronary artery disease/ischemic heart disease



AASLD, IDSA, IAS-USA. Recommendations for testing, managing, and treating hepatitis C. http://www.hcvguidelines.org. Accessed December 7, 2015. 2. Jacobson IM et al. *Clin Gastroenterol Hepatol.* 2010;8(12):1017-1029.

### Mortality: HCV vs HIV



1. Ly KN et al. Ann Intern Med. 2012;156(4):271-278.

2. Holmberg S, Ly KN, Xing J, Moorman AC. Rising mortality from hepatitis C virus in the United States, 2002-2013. Paper presented at: American College of Gastroenterology Annual Scientific Meeting and Postgraduate Course; October 16-21, 2015; Honolulu,

### **Clinical Pearl #1**

Among patients with hepatitis C antibody positivity, follow-up hepatitis C RNA quantitative and hepatitis C genotype should be sent to confirm chronic hepatitis C infection

### **Clinical Pearl #2**

Due to similar mode of transmission of hepatitis C, hepatitis B, and HIV, it is important to send for:

- Hepatitis B sAg, Hepatitis B sAb, Hepatitis B cAb total
- HIV screening

# **Case #2: Staging of Liver Disease**

- 48 year old male with a history of chornic hepatitis C infection. Patient is treatment naïve. His lab results are as follows: ■ CBC—Hgb 13.0. WBC 5.0, platelet count 120,000 Hepatitis BsAg, BcAb, BsAb all negative Hepatitis C Ab was positive HCV RNA 4,000,000 IU/ml ■ HCV genotype 1a
- What are your next considerations prior to offering patient treatment for hepatitis C?

### **Outcome Following Hepatitis C Infection**



# **Staging of Liver Disease**

- **FIB-4**
- AST to platelet ratio index (APRI)
- Fibrosure
- Ultrasound with dopplers
- Ultrasound-based transient hepatic elastography
- Upper endoscopy
- Liver Biopsy

Klibansky DA, J Viral Hepat, 2012

### Risk of Hepatocellular Carcinoma: Platelet Count < 150,000



### **Screening for HCC**

Risk factor: Cirrhosis (Platelet count < 150,000/mm<sup>3</sup>)

Ultrasound of liver every 6-12 months

### **Clinical Pearl #3**

It is important to stage patient's liver disease prior to initiation of hepatitis C treatment because it affects treatment duration and posttreatment monitoring

If you are using a non-invasive marker to determine cirrhotic liver disease, it is important to use at least 2 markers to rule out existing advanced fibrosis or cirrhosis.

### **Case #3: Treatment Decisions**

- A 55 year old male with a history of prior IV drug use who presents to the clinic for evaluation of abnormal liver function testing. He underwent extensive work-up which included:
  - CBC—Hgb 13.0. WBC 5.0, platelet count 120,000
  - Hepatitis BsAg, BcAb, BsAb all negative
  - Hepatitis C Ab was positive
  - HCV RNA 4,000,000 IU/ml
  - HCV genotype 1a
  - Liver biopsy shows: Grade 3, Stage 3 disease

What are additional history to considered prior to recommendation of treatment of hepatitis C?

### **Qualify of Life After SVR12**

HRQL outcomes in 3486 patients with SVR12



#### SF-36 summary scores

### Improvement in HRQL after achieving SVR is maintained in the long-term follow up

Younossi ZM et al AASLD 2017, Ab 64

Greatest HRQL gains consistently observed

# Survival Curves for CLD Patients With and Without SVR



Increasing access to DAAs for ACLD patients should result in fewer overall deaths

Veterans Affairs HCV Clinical Case Registry

Backus, AASLD, 2017, oral 78

### HCC Risk with SVR12

Retrospective study in 167 medical centers including 35,871 IFN-only regimens, 4,535 DAA+IFN and 21,948 DAA-only (80% SOF-based regimens); mean f/u of 6.1 years (range: 2-18); incident HCCs=3,271



Veterans Affairs HCV Registry

Ioannou et al, AASLD, 2017, oral 142

# HCC Recurrence after DAA Treatment

|                                                                                     | With DAA Treatment |       | Without Treatment |       | Odds Ratio                                 |                    | Odds Ratio         |  |
|-------------------------------------------------------------------------------------|--------------------|-------|-------------------|-------|--------------------------------------------|--------------------|--------------------|--|
| Study or Subgroup                                                                   | Events             | Total | Events            | Total | Weight                                     | M-H, Fixed, 95% Cl | M-H, Fixed, 95% Cl |  |
| ANRS Collaborative Study                                                            | 32                 | 516   | 47                | 125   | 46.3%                                      | 0.11 [0.07, 0.18]  |                    |  |
| Cheung et al 2016                                                                   | 25                 | 406   | 11                | 261   | 8.2%                                       | 1.49 [0.72, 3.08]  | _ <b>_</b>         |  |
| lkeda et al 2017                                                                    | 21                 | 89    | 41                | 89    | 20.4%                                      | 0.36 [0.19, 0.69]  | _ <b>_</b>         |  |
| Minami et al 2016                                                                   | 8                  | 27    | 525               | 861   | 14.6%                                      | 0.27 [0.12, 0.62]  | <b>_</b>           |  |
| Virlogeux et al 2017                                                                | 10                 | 23    | 30                | 45    | 7.5%                                       | 0.38 [0.14, 1.08]  |                    |  |
| Vukotic et al 2017                                                                  | 8                  | 16    | 14                | 33    | 3.0%                                       | 1.36 [0.41, 4.50]  |                    |  |
| Total (95% CI)                                                                      |                    | 1077  |                   | 1414  | 100.0%                                     | 0.36 [0.27, 0.47]  | •                  |  |
| Total events                                                                        | 104                |       | 668               |       |                                            |                    |                    |  |
| Heterogeneity: Chi <sup>2</sup> = 40.69, df = 5 (P < 0.00001); l <sup>2</sup> = 88% |                    |       |                   |       |                                            |                    |                    |  |
| Test for overall effect: Z = 7.1                                                    |                    |       |                   |       | Favours DAA Treatment Favours No Treatment |                    |                    |  |

#### Nguyen DL et al, ACG 2018

# Why is Hep C Curable?



## Hepatitis C Treatment Evolution



# Important Initial Treatment Considerations

### Treatment status

- Treatment naïve vs. treatment experienced
- Prior failure of DDA
- Prior failure of interferon-based therapy
- Hepatitis C genotype
- Hepatitis C baseline viral load
- Co-existing advanced renal disease
- Stage of liver disease

Non-cirrhotic, compensated cirrhosis, decompensated cirrhosis

Nguyen DL et al, Open Medicine, 2016

### **HCV Treatment Guidelines**



# Pan-Genotypic Regimens



- 1. 12-week regimen for all genotypes
- Decompensated cirrhosis add in RBV for 12-weeks. If RBV ineligible, then 24-weeks
- 3. Decompensated cirrhosis with prior failure of sofosbuvir or NS5A-based treatments, 24 weeks with RBV



12-week salvage regimen for prior treatment failures of NS5A and sofosbuvir failures. Not for decompensated cirrhotics



- 1. 8-week Treatment-naïve, non-cirrhotic
- 2. 12-week Treatment naiive, compensated cirrhotic
- 3. Not indicated for decompensated cirrhosis
- 4. Treatment experienced:
  <u>GT 1</u>—NS5A w/o NS3/4A: 16 weeks
  —NS3/4A w/o NS5A: 12 weeks (non-cirrhotic); 16 weeks (cirrhotic)

<u>GT 1,2,4,5,6 PRS</u>– 8 weeks (non-cirrhotic); 12 weeks cirrhotic

<u>GT 3 PRS</u>— 16 weeks (non-cirrhotic, compensated cirrhotic)

# G/P Real World Data: German Hepatitis Registry



GT2

GT3

• 1 patient had virologic relapse; 1 patients had reinfection post treatment

GT1

\*Includes unknown GTs and mixed GT populations (GT1 + GT2 and GT1 + GT3) AE, adverse event; d/c, discontinuation; ITT, intent-to-treat; mITT, modified intent-to-treat.

Overall

Wiegand J, AASLD 2018 Poster Presentation #611.

GT5/6/Mixed\*

GT4

# **TRIO Real World Cohorts for HCV Patients with GT 1-6**



LDV/SOF data is excluded from this slide Curry, AASLD 2018, 678

### **TRIO Real World Data for GT 1-6**



LDV/SOF data is excluded from this slide

# TRIO Real World Data for SOF-VEL-VOX



Prior treatment

SOF/VEL/VOX for 12 weeks resulted in high real world efficacy, irrespective of genotype and prior treatment regimen

Bacon AASLD 2018, #706

# Linkage to Care

Differences in linkage to care with HCV specialists at health center (2016 – 1Q/2017)

| 100 -             | Linkag       | e to Care        | Multivariate Analysis for<br>Association with Linkage  |                                                         |                                 |  |
|-------------------|--------------|------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------|--|
|                   |              |                  |                                                        | aOR (95% CI)                                            | <i>p</i> -value                 |  |
| 80 -              | P<           | 0 0003           | Birth cohort                                           | 2.3 (1.4–3.7)                                           | 0.0008                          |  |
| 60 -<br>%<br>40 - | 52           | 37               | Clinical Site<br>Outpatient<br>ED<br>Inpatient<br>Jail | 1.0<br>0.7 (0.3–1.4)<br>0.5 (0.3–0.8)<br>0.4 (0.04–3.9) | Ref<br>0.3162<br>0.009<br>0.430 |  |
| 20                | 127/<br>244  | 120/<br>326      | Risk Factor<br>Other<br>Active IVDU<br>Remote IVDU     | 1.0<br>0.4 (0.2–0.7)<br>1.0 (0.6–1.7)                   | Ref<br>0.0005<br>0.9364         |  |
| 0 -               | Baby Boomers | Non-Baby Boomers | Psychiatric Illness                                    | 0.8 (0.5–1.1)                                           | 0.1831                          |  |

Overall, only 43% of patients were linked to care with HCV specialists

#### METROHEALTH CLEVELAND, OH

#### Pham, AASLD 2017, Oral 23

### **CONCLUSIONS**



