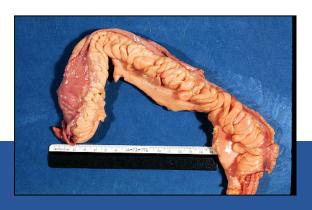
Abdominal surgery in the era of biologic therapy: What are the guidelines?

Matthew T. Brady, MD | February 22, 2019

Disclosures: None

Surgery in Ulcerative Colitis

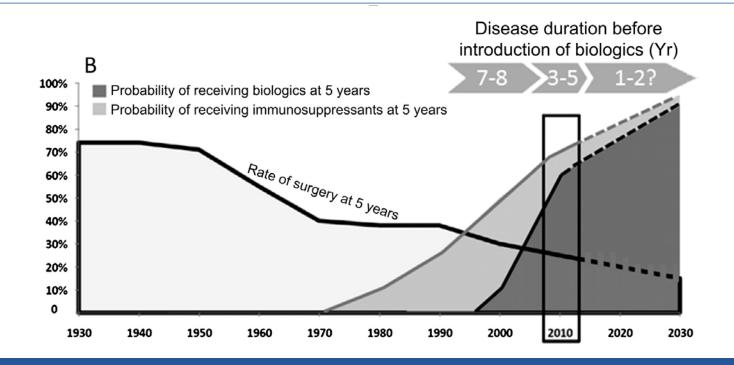
- Refractory colitis
- Clinical deterioration
- Medication intolerability
- Dysplasia
- Emergency

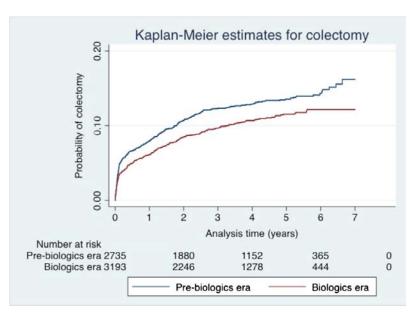

Surgery in Crohn's disease

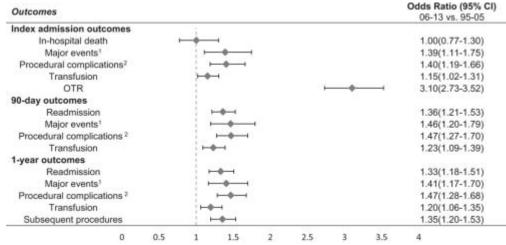
Commonly for complications

Stricture

Fistula


Perforation and abscess




UCI Health

Surgery trends in the era of biologic therapy

Surgery trends in the era of biologic therapy

Abbreviation: OTR=Other-than-routine Discharge

- 1. Abou Khalil, M., Boutros, M., Nedjar, H. et al. Incidence Rates and Predictors of Colectomy for Ulcerative Colitis in the Era of Biologics: Results from a Provincial Database. J Gastrointest Surg (2018) 22: 124.
- 2. Abelson JS, Michelassi F, Mao J, Sedrakyan A, Yeo H. Higher Surgical Morbidity for Ulcerative Colitis Patients in the Era of Biologics. Ann Surg 2018 Aug;268(2):311-317.

¹ Major events: acute myocardial infarction, hemorrhagic stroke, pulmonary embolism, shock

Procedural complications: latrogenic complications, bleeding, wound complications, postoperative infection

Surgery on biologics

- We are still operating on many patients with IBD
- These patients are increasingly on biologic therapy
- These medications are immunosuppressive
- How do we address biologic therapy perioperatively

Surgery on biologics

- Does it affect our postoperative outcomes?
- If yes, does it impact our patient management?
- What data is available?
- UC vs Crohn's disease

Can we blame the medications?

Corticosteroids

Immunomodulators

Disease severity

Malnutrition

Anemia

Emergency surgery

Sepsis

Time since last administration

Varied provider practice

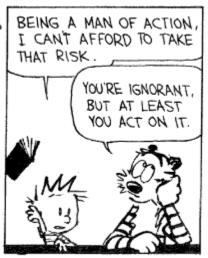
Anti-TNF

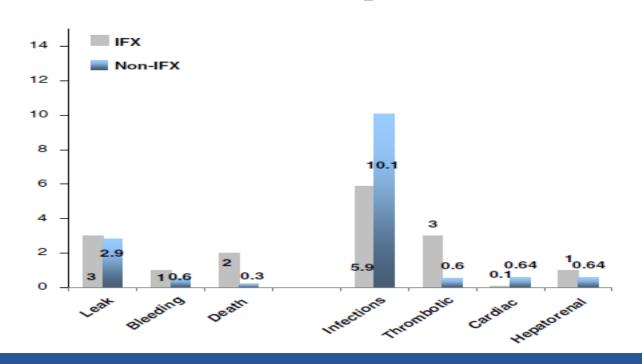
Majority of the literature is focused on infliximab

FDA approved for Crohn's disease in 1998

FDA approved for UC in 2005

Anti-TNF and postoperative outcomes


Data is mixed and controversial



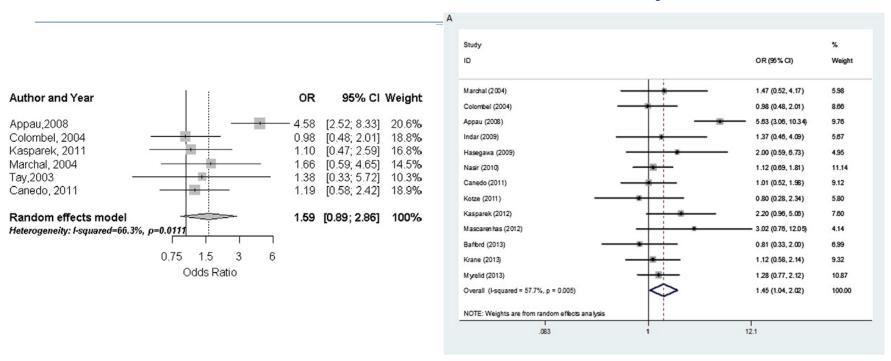
YOU REALIZE THAT NOTHING IS AS CLEAR AND SIMPLE AS IT FIRST APPEARS. ULTIMATELY, KNOWLEDGE IS PARALYZING.

Anti-TNF and IBD surgery

Anti-TNF and IBD surgery

 Table 5
 Post Operative Outcomes

	Complication	Non IFX group (1998–2007) n=329 (%)	IFX group $n=60$ (%)	Pre-IFX group (1991 to 1997) n=69 (%)	Odd's ratio (95%CI)	<i>p</i> -Value
30-Day complications	Readmission rate	9.4	20.0	2.9	2.40(1.15,5)* 8.37(1.79,39.15)†	0.019 ^a 0.007 ^b
	Sepsis	9.7	20.0	5.8	2.32(1.12, 4.82)* 4.06(1.23,13.37)†	$0.024^a \ 0.021^b$
	Intraabdominal abscess	4.3	10.0	4.3	2.50(0.92, 6.79)* 2.44(0.58,10.23)†	0.10 ^a 0.30 ^b
	Anastomotic leak	4.3	10.0	1.4		0.09 ^a 0.049 ^b
	Reoperation	3.0	8.3	0.0	2.9(0.95,8.81)*	$0.06^a \ 0.02^b$


^a p: No IFX vs. IFX b p: Pre-IFX vs. IFX

Anti-TNF and Crohn's disease

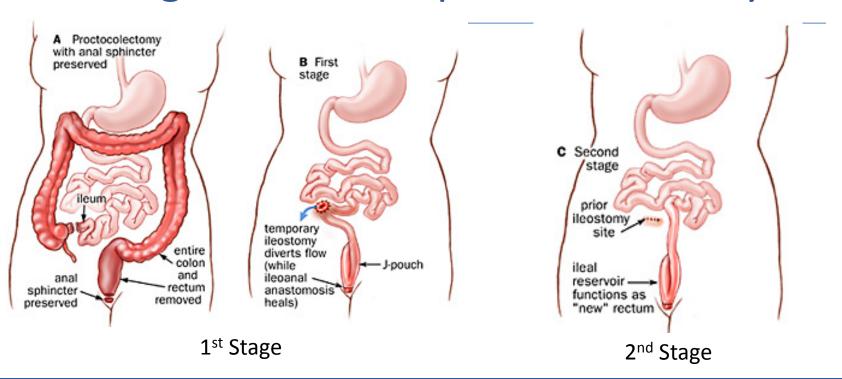
Authors	Journal	Year	Pts with Crohn's	anti- TNF	Outcome
Lau et al.	Ann Surg	2014	123	All	Increasing drug levels associated with adverse outcomes
de Buck van Overstraeten					
et al	Br J Surg	2017	538	111	Increased risk of AL in subset analysis
Brouquet	Ann Surg	2018	592	143	Increased risk of adverse outcome with anti-TNF < 3month
Fumery et al.	Am J Gastro	2016	209	137	No effect regardless of drug level or interval from last dose; worse outcomes with corticosteroids
Yamamoto et al.	UEG	2016	231	79	No effect of anti TNF; blood transfusion, perforating disease, and previous resection were risk factors for complication

UCI Health

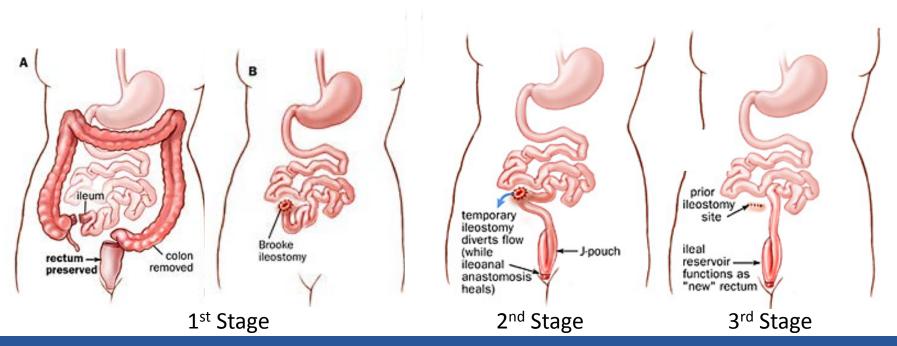
Anti-TNF and Crohn's meta-analyses

- Greg Rosenfeld, Hong Qian, Brian Bressler; The risks of post-operative complications following pre-operative infliximab therapy for Crohn's disease in patients undergoing abdominal surgery: A systematic review and meta-analysis, *Journal of Crohn's and Colitis*, Volume 7, Issue 11, 1 December 2013, Pages 868–877
- 2. Yang ZP, Hong L, Wu Q, et al. Preoperative infliximab use and postoperative complications in Crohn's disease: a systematic review and meta-analysis. Int J Surg 2014;12(3):224–30.

Surgery for Crohn's and anti-TNF

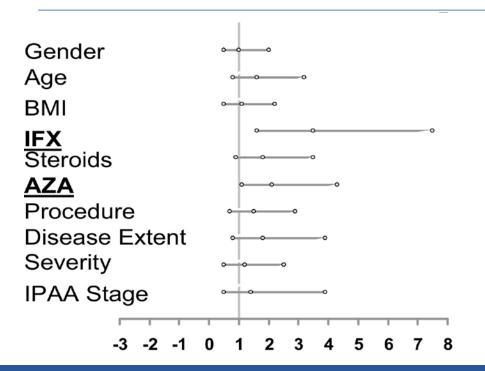

- Likely safe to operate with anti-TNF
- Reasonable to hold anti-TNF approaching surgery when possible
- Restart once all postoperative infectious complications resolved

Anti-TNF and Ulcerative colitis


Do outcomes differ from Crohn's disease?

Are implications different in Crohn's disease?

Two stage restorative proctocolectomy


Three stage restorative proctocolectomy

Anti-TNF and UC: Ileal pouch anal anastomosis

Complication	IFX (n=29)	Non-IFX $(n=52)$	p value
Overall	13 (44.8%)	23 (44.2%)	0.96
Infectious	5 (17.2%)	14 (26.9%)	0.32
Pelvic/intraabdominal abscess	4 (13.8%)	7 (13.5%)	1.00
Wound infection	1 (3.5%)	10 (19.2%)	0.09
Non-infectious	12 (41.4%)	16 (30.8%)	0.34
Pouch/anastomotic leak	1 (3.5%)	5 (9.6%)	0.41
Pouch-related	0 (0.0%)	2 (3.9%)	0.53
Other	12 (41.4%)	13 (25.0%)	0.13

Anti-TNF and UC: Ileal pouch anal anastomosis

Table 3. Multiple Variable Logistic Regression Model Assessing Association of Infliximab Use and Infectious Complication in First 30 Days after Ileal Pouch Anal Anastomosis, Adjusting for Age, Colitis Severity, and Other Medication Use

Factor	Category	Odds ratio* (95% CI)
Age (y)	≤ 38	1.3 (0.6-2.7)
	> 38	1.0 (reference)
IFX	Yes	2.7 (1.1-6.7)
	No	1.0 (reference)
Steroid	High	1.3 (0.6-2.7)
	No/low/moderate	1.0 (reference)
AZA use	Yes	1.3 (0.6-2.9)
	No	1.0 (reference)
Colitis severity	Severe/fulminant	1.0 (0.4-2.1)
	Mild	1.0 (reference)

^{*}Odds ratio using logistic regression model, infectious complication as the dependent variable.

AZA, azathioprine; IFX, infliximab.

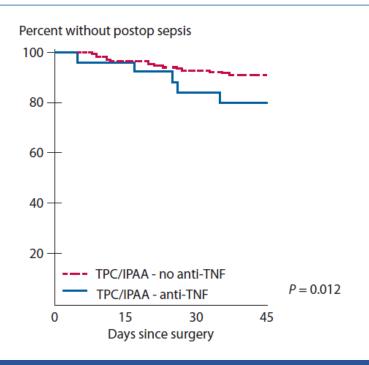
Anti-TNF and UC: Ileal pouch anal anastomosis

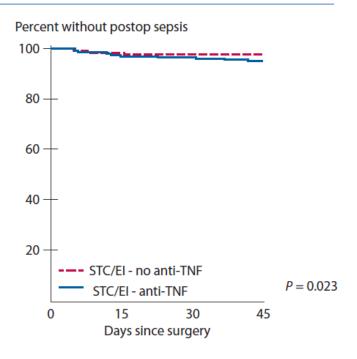
■523 patients

All underwent IPAA

46 underwent 2 stage IPAA with IFX

Odds ratios for complications higher in infliximab group:


- OR 3.54 for early complication
- OR 13.8 for sepsis
- OR 2.19 for late complication


Table 2. Early and late postoperative complications, univariate analysis (n=46 matched pairs)

	Infliximab	Noninfliximab	McNemar P value
Sepsis	10 (21.7)	1 (2.2)	0.016
Leak	8 (17.4)	1* (2.2)	0.023
Postoperative hemorrhage	3 (6.5)	1 (2.2)	0.62
Thrombotic event	4 (8.7)	1 (2.2)	0.37
Ileus	2 (4.3)	3 (6.5)	1.00
Overall early postoperative complication	16 (34.8)	7 (15.2)	0.027
Pouchitis	18 (39.1)	7 (15.2)	0.037
Stricture	5 (10.9)	9 (19.6)	0.39
SBO	3 (6.5)	6 (13)	0.45
Overall late postoperative complication	24 (52.2)	17 (37)	0.23

SBO = small-bowel obstruction. • Data are numbers with percentages in parentheses unless otherwise indicated. • *Subclinical leak not associated with pelvic sepsis.

Two stage vs. three stage approach

Anti-TNF and UC

Ulcerative colitis

Strongly consider 3 stage procedure in patients with recent exposure to anti-TNF

Vedolizumab

Murine monoclonal antibody to $\alpha 4\beta 7$ integrin

Half life of 22 days

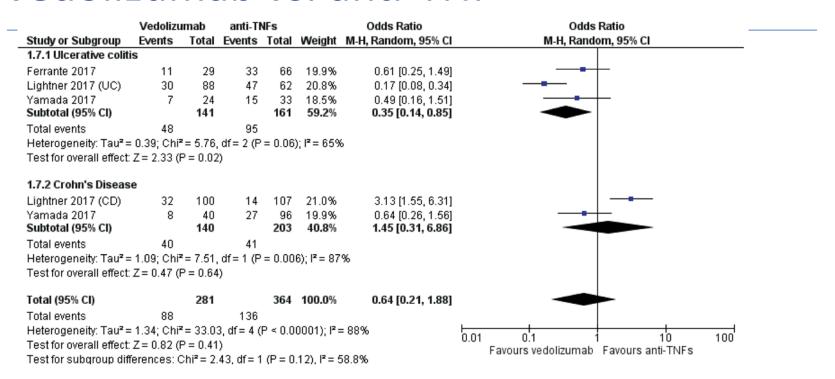
2014 - Approved by FDA for moderate to severe UC and Crohn's disease

Again data is controversial

UCI Health

Vedolizumab vs. no biologic

	Vedolizu	mah	No biolo	aice		Odds Ratio	Odds Ratio
Study or Subgroup	Events		Events	_	Weight	M-H, Random, 95% CI	
2.4.1 Ulcerative colit		10141	Lionio	1000	rroigin	in rigitalities in control	in rigitalitating 55 % 51
Ferrante 2017	11	29	43	80	24.7%	0.53 [0.22, 1.25]	
Yamada 2017 Subtotal (95% CI)	7	24 53	48	129 209	23.8% 48.5 %	0.69 [0.27, 1.80] 0.60 [0.31, 1.13]	
Total events	18		91				
Heterogeneity: Tau ² =	= 0.00; Chi²	= 0.18	df=1 (P:	= 0.67);	$I^2 = 0\%$		
Test for overall effect	: Z = 1.58 (F	P = 0.11)				
2.4.2 Crohn's Diseas	se						
Lightner 2017 (CD)	32	100	14	105	26.7%	3.06 [1.52, 6.17]	
Yamada 2017	8	40	41	121	24.8%	0.49 [0.21, 1.15]	
Subtotal (95% CI)		140		226	51.5%	1.24 [0.21, 7.52]	
Total events	40		55				
Heterogeneity: Tau ² =	= 1.53; Chi²	= 10.5	D, df = 1 (F	P = 0.00	1); $I^2 = 90$	%	
Test for overall effect	Z = 0.24 (F	o = 0.81)				
Total (95% CI)		193		435	100.0%	0.88 [0.34, 2.26]	
Total events	58		146				
Heterogeneity: Tau ² =	= 0.74; Chi²	= 15.0	7, df = 3 (F	P = 0.00	2); I² = 80	%	0.01 0.1 1 10 1
Test for overall effect	Z = 0.26 (F	P = 0.79))				Favours vedolizumab Favours no biologics
Test for subgroup dif	fferences: C	$hi^2 = 0.$	57, df = 1	(P = 0.4)	45), I² = 09	%	r avours voucizarriab T avours no biologics


^{1.} Diana E Yung, et al; Systematic Review and Meta-analysis: Vedolizumab and Postoperative Complications in Inflammatory Bowel Disease, *Inflammatory Bowel Diseases*, Volume 24, Issue 11, 12 October 2018, Pages 2327–2338.

¹² October 2018, Pages 2327–2338,

2. Lightner AL, Raffals LE, Mathis KL, et al. Postoperative outcomes in vedolizumab-treated patients undergoing abdominal operations for inflammatory bowel design that the 2017;11:185–90.

^{3.} Lightner AL et al. Postoperative Outcomes in Vedolizumab-Treated Patients Undergoing Major Abdominal Operations for Inflammatory Bowel Disease: Retrospective Multicenter Cohort Study, *Inflammatory Bowel Diseases*, Volume 24, Issue 4, 19 March 2018, Pages 871–876,

Vedolizumab vs. anti-TNF

^{1.} Diana E Yung, et al; Systematic Review and Meta-analysis: Vedolizumab and Postoperative Complications in Inflammatory Bowel Disease, Inflammatory Bowel Disease, Volume 24, Issue 11, 12 October 2018, Pages 2327–2338,

^{2.} Lightner AL, Raffals LE, Mathis KL, et al. Postoperative outcomes in vedolizumab-treated patients undergoing abdominal operations for inflammatory bowel descriptions for i

^{3.} Lightner AL et al. Postoperative Outcomes in Vedolizumab-Treated Patients Undergoing Major Abdominal Operations for Inflammatory Bowel Disease: Retrospective Multicenter Cohort Study, *Inflammatory Bowel Diseases*, Volume 24, Issue 4, 19 March 2018, Pages 871–876,

Vedolizumab in UC

Table 3. Thirty-day post-operative complications.

	No biological therapy [n=172]	TNF α inhibitors [n =126]	Vedolizumab [n=94]	p-Value
Any postoperative complication	57 [33%]	35 [28%]	50 [53%]	<0.01
Non-SSI infections	10 [6%]	6 [5%]	7 [7%]	< 0.71
UTI	5	2	4	< 0.49
Pneumonia	2	1	3	< 0.31
Non-abdominal sepsis	2	2	1	< 0.92
C.diff colitis	0	1	1	< 0.44
Cholangitis	1	0	0	< 0.52
All SSIs	22 [13%]	13 [10%]	35 [37%]	< 0.01
sSSIs	11 [6%]	5 [4%]	20 [21%]	< 0.01
dSSIs	11 [6%]	6 [5%]	13 [14%]	< 0.03
Anast leak	1 [1%]	4 [3%]	2 [2%]	< 0.24
MCS	1 [1%]	1 [1%]	7 [7%]	< 0.01
SBO/ileus	20 [12%]	12 [10%]	9 [10%]	< 0.79
Readmission	17 [10%]	12 [10%]	15 [16%]	< 0.24
ROR	8 [5%]	10 [8%]	8 [9%]	< 0.37

SSI = surgical site infection [superficial, deep, anastomotic leak, mucocutaneous separation]. Non-SSI infections = pneumonia, Clostridium difficile [C.diff], urinary tract infection [UTI], cholangitis, sepsis. sSSI = superficial surgical site infection. dSSI = deep space surgical site infection. Anast leak = anastomotic leak. MCS = mucocutaneous separation. ROR = return to the operating room. SBO = small bowel obstruction.

Vedolizumab:

Likely safe in the perioperative period

Similar approach as is used with anti-TNF is applicable

Ustekinumab

Human monoclonal antibody to interleukin -12 and -23 Biologic half life of 15-32 days 2016 - approved for moderate to severe Crohn's disease

Ustekinumab

Table 4. Postoperative outcomes

	Ustekinumab cohort (n=20)	Anti-TNF cohort (n=40)	P value
Postoperative complications:			
Wound infection ≤ 30 days	1 (5%)	2 (5%)	1.00
Wound infection > 30 days	0	0	-
Anastomotic leakage ≤ 30 days	0	3 (7.5%)	0.54
Anastomotic leakage > 30 days	0	0	-
Abscess ≤ 30 days	0	4 (10%)	0.29
Abscess > 30 days	0	2 (5%)	0.54
Nonsurgical site infection ≤ 30 days	0	3 (7.5%)	0.54
Nonsurgical site infection > 30 days	0	0	-
Postoperative ileus /bowel obstruction	3 (15%)	4 (10%)	0.67
Delayed wound healing	0	5 (12.5%)	0.16
Need for reoperation/readmission	2 (10%)	6 (15%)	0.59
Median preoperative hospital stay (days, IQR)	0 (0-4)	0 (0-2)	0.59
Median total hospital stay (days, IQR)	7 (5–14)	7 (4–9)	0.45
Mortality at 6 months	0	0	-

Shim HH et al.; Preoperative Ustekinumab Treatment Is Not Associated With Increased Postoperative Complications in Crohn's Disease: A Canadian Multi-Centre Observational Cohort Study, Journal of the Canadian Association of Gastroenterology, Volume 1, Issue 3, 12 September 2018, Pages 115– 123

Ustekinumab

Likely safe perioperatively Limited data available

Summary

Likely safe to operate in the setting of biologics

Holding biologic therapy approaching an operation is appropriate

Resumption of therapy once all infectious complications resolved safe

UCI Health